
 www.index64.com

In-memory key-value store

Benchmark report 2017

Content 2 Index64 6.0

Content

1. Context of the Benchmark .. 3

1.1. Method .. 3

1.2. General case .. 3

1.3. Sorted strings ... 4

1.4. Conducting the test ... 4

2. General Case Results ... 5

2.1. Centos 6.7 virtual machine .. 5

2.2. Centos 6.7 physical machine ... 6

3. Sorted Strings Results .. 7

3.1. Centos 6.7 virtual machine .. 7

4. Appendices .. 8

4.1. Terms used .. 8

4.2. Test report ... 8

This document describes the method used to test Index64 v6.0 in different environments and it

presents the results.

Context of the Benchmark 3 Index64 6.0

1. Context of the Benchmark
This benchmark considers the evaluation of Index64 v6.0’s raw performance in write and read in

comparison with Redis, the baseline offering on the in-memory key-value stores market in January

2016.

1.1. Method

Key-value stores Index64 and Redis are placed under the same conditions.

 They are tested alternately to avoid interferences.

 When the test involves Index64, a server instance is launched. The Index64 server instance

activates as many threads as connected clients. When the test involves Redis, 1 server

instance is launched.

 Logging of operations and pipelining are deactivated in Redis, in order to prevent

interference with the interpretation of performance. Moreover, the commands are all

synchronous.

The writing elapsed time starts as soon as a client thread starts its write processing. The writing

elapsed time ends when all the client threads have completed their write processing. Likewise for the

reading elapsed time.

1.2. General case

 This performance test implements read and write commands on a set of 10 million key-value pairs.

The keys used are different. The measurements are taken consecutively for a number of threads

ranging from 1 to 16.

 Index64 Redis

Write command insert SET

Read command select GET

Client Thread 1

Client Thread 2

Client Thread 3

Elapsed time

Context of the Benchmark 4 Index64 6.0

1.3. Sorted strings

This performance test implements read and write commands on a set of 10 million key-value pairs.

The keys used are different. The measurements are taken consecutively for a number of threads

ranging from 1 to 16.

 Index64 Redis

Write command insert ZADD

Read command scanAscNext ZRANGEBYLEX

During the sorted string test, the data are sorted on the fly by the database. For Index64, this

functionality is native whereas Redis uses a specific structure which complements its main structure.

1.4. Conducting the test

Where T is the number of threads and N is the number of key-value pairs, the test is conducted as

follows.

Index64 Redis

Launch of Index64 server instance. Launch of Redis server instance.

For the general test, launch of the TestStrings client programme.

For the sorted strings test, launch of the TestSortedSet client programme.

The client generates N key-value pairs and splits them into T groups of the same size.

The client launches T threads.

The following set of steps is repeated 3 times.

The T client threads are connected to the

Index64 server instance.

The T client threads are connected to the Redis

server instance.

Each client thread writes its group of key-value pairs. The client threads work simultaneously.

Once all the writing has finished, each client thread reads its group of key-value pairs. The client

threads work simultaneously.

Once all the reading has finished, a report presents the elapsed time for the writing and the elapsed

time for the reading.

The number of operations per second is calculated from the elapsed time using the formula:

operations per second = 10 million / elapsed time

General Case Results 5 Index64 6.0

2. General Case Results

2.1. Centos 6.7 virtual machine

 READ OPERATIONS PER SECOND

 select for Index64

 GET for Redis

 WRITE OPERATIONS PER SECOND

 insert for index64

 SET for Redis

Physical: Centos Release 6.7

Machine: DELL PowerEdge T620 - 20 cores

CPU: Intel Xeon CPU E5-2690 v2 @ 3.00 GHz

Memory: 64 GB Loopback on a 1Gb network

Kvm: Centos Release 6.7 - use 20 cores

Compiler g++ 4.8.2

Index64 v6.0 - Redis 3.0.6

Asynchronous mode & Pipelining

General Case Results 6 Index64 6.0

2.2. Centos 6.7 physical machine

 READ OPERATIONS PER SECOND

 select for Index64

 GET for Redis

 WRITE OPERATIONS PER SECOND

 insert for index64

 SET for Redis

Physical: Centos Release 6.7

Machine: DELL PowerEdge T620 - 20 cores

CPU: Intel Xeon CPU E5-2690 v2 @ 3.00 GHz

Memory: 64 GB Loopback on a 1Gb network

No kvm

Compiler g++ 4.8.2

Index64 v6.0 - Redis 3.0.6

Asynchronous mode & Pipelining

Sorted String Results 7 Index64 6.0

3. Sorted Strings Results

3.1. Centos 6.7 virtual machine

 READ OPERATIONS PER SECOND

 scanAscNext for Index64

 ZRANGEBYLEX for Redis

 WRITE OPERATIONS PER SECOND

 insert for index64

 ZADD for Redis

Physical: Centos Release 6.7

Machine: DELL PowerEdge T620 - 20 cores

CPU: Intel Xeon CPU E5-2690 v2 @ 3.00 GHz

Memory: 64 GB Loopback on a 1Gb network

Kvm: Centos Release 6.7 - use 20 cores

Compiler g++ 4.8.2

Index64 v6.0 - Redis 3.0.6

Synchronous mode

Appendices 8 Index64 6.0

4. Appendices

4.1. Terms used

ops: Number of write or read operations per second. The read/write operations are often called

GET/PUT.

system time: system time is the time shown on the machine. The difference between two system

times gives duration. The maximum precision retained is the millisecond.

4.2. Test report

The graphs in paragraph 2.1 are produced from the following test report:

Steps Keys Threads
Index64
System

Time

Redis
System

Time

Index64 Redis

unordered_write 10000000 1 thread 213,871 ms 1,836,224 ms

46,800 ops 5,400 ops

unordered_read 10000000 1 thread 204,611 ms 1,815,269 ms

48,900 ops 5,500 ops

unordered_write 10000000 2 threads 102,032 ms 906,945 ms

98,000 ops 11,000 ops

unordered_read 10000000 2 threads 98,541 ms 892,652 ms

101,500 ops 11,200 ops

unordered_write 10000000 3 threads 67,408 ms 603,874 ms

148,400 ops 16,600 ops

unordered_read 10000000 3 threads 71,123 ms 587,882 ms

140,600 ops 17,000 ops

unordered_write 10000000 4 threads 48,209 ms 451,893 ms

207,400 ops 22,100 ops

unordered_read 10000000 4 threads 46,440 ms 436,923 ms

215,300 ops 22,900 ops

unordered_write 10000000 5 threads 37,901 ms 370,428 ms

263,800 ops 27,000 ops

unordered_read 10000000 5 threads 36,019 ms 350,200 ms

277,600 ops 28,600 ops

unordered_write 10000000 6 threads 30,828 ms 332,777 ms

324,400 ops 30,100 ops

unordered_read 10000000 6 threads 30,013 ms 330,548 ms

333,200 ops 30,300 ops

unordered_write 10000000 7 threads 26,285 ms 287,909 ms

380,400 ops 34,700 ops

unordered_read 10000000 7 threads 25,430 ms 257,573 ms

393,200 ops 38,800 ops

unordered_write 10000000 8 threads 22,989 ms 268,818 ms

435,000 ops 37,200 ops

unordered_read 10000000 8 threads 22,494 ms 258,148 ms

444,600 ops 38,700 ops

unordered_write 10000000 9 threads 21,269 ms 217,234 ms

470,200 ops 46,000 ops

unordered_read 10000000 9 threads 20,336 ms 206,733 ms

491,700 ops 48,400 ops

unordered_write 10000000 10 threads 19,241 ms 141,834 ms

519,700 ops 70,500 ops

unordered_read 10000000 10 threads 18,077 ms 146,140 ms

553,200 ops 68,400 ops

unordered_write 10000000 11 threads 19,924 ms 96,778 ms

501,900 ops 103,300 ops

unordered_read 10000000 11 threads 18,520 ms 118,073 ms

540,000 ops 84,700 ops

unordered_write 10000000 12 threads 18,153 ms 78,282 ms

550,900 ops 127,700 ops

unordered_read 10000000 12 threads 17,829 ms 112,610 ms

560,900 ops 88,800 ops

unordered_write 10000000 13 threads 18,173 ms 72,670 ms

550,300 ops 137,600 ops

unordered_read 10000000 13 threads 17,348 ms 109,583 ms

576,400 ops 91,300 ops

unordered_write 10000000 14 threads 17,516 ms 68,382 ms

570,900 ops 146,200 ops

unordered_read 10000000 14 threads 16,523 ms 109,344 ms

605,200 ops 91,500 ops

unordered_write 10000000 15 threads 16,699 ms 61,400 ms

598,800 ops 162,900 ops

unordered_read 10000000 15 threads 15,889 ms 89,928 ms

629,400 ops 111,200 ops

unordered_write 10000000 16 threads 16,167 ms 54,457 ms

618,500 ops 183,600 ops

unordered_read 10000000 16 threads 15,408 ms 71,858 ms

649,000 ops 139,200 ops

